
A New Foundation for
Reasoning, Computing, and Understanding

Steven Obua

A
bstraction

Logic

Practal Press

Founder’s Edition

;

For Anita (mum) and Wolfgang Rosenberg

Abstraction Logic

A New Foundation for
Reasoning, Computing, and Understanding

Founder’s Edition

http://abstractionlogic.com

Steven Obua

c� 2024 – 2025 Steven Obua. All rights reserved.

https://doi.org/10.5281/zenodo.15042623

http://abstractionlogic.com
https://doi.org/10.5281/zenodo.15042623

Key words and phrases. Logic, Algebra, Computer Algebra,
Mathematical Foundations, Mathematical Logic, Axiomatic
Reasoning, Natural Deduction, Sequent Calculus, Bi-Heyting
Algebras, De Bruijn Indices, Unification, Pattern Matching,

Lambda Calculus, Simply-Typed Lambda Calculus,
Higher-Order Logic, Predicate Logic, First-Order Logic,

Second-Order Logic, Algebraic Specification, Algebraic Logic,
Universal Algebra, Set Theory, Type Theory, Logical Frameworks

Abstract. Abstraction logic is a new logic combining ex-
ceptional simplicity with astonishing generality. It combines
the best features of first-order logic and higher-order logic,
while avoiding their respective drawbacks. It manages to do
so because it is based on a simple understanding of the math-
ematical universe, its operations and, in particular, its oper-
ators. Abstraction algebra encodes this understanding as a
formal language, generalising abstract algebra. It is the right
setting for the treatment of alpha equivalence. Abstraction
logic then turns abstraction algebra into a logic by consid-
ering truth values as a partially ordered substructure of the
mathematical universe. A key property of this logic is that
formulas are merely terms. Among the presented proof sys-
tems are natural deduction, which is sound if truth values
form a complete lattice, and sequent calculus, which is sound
if truth values form a complete bi-Heyting algebra. By con-
structing the Rasiowa model, we prove that natural deduction
is a complete proof system for abstraction logic.

Contents

Preface vii

Chapter 1. The Mathematical Universe 1
Operations 2
Cantor’s Theorem 4
Are Operations Mathematical Objects? 5
Operators 6

Chapter 2. Abstraction Algebra 9
Syntax 10
Semantics 14
Alpha Equivalence 16
De Bruijn Terms and Alpha Conversion 17
Evaluating De Bruijn Terms 21
Alpha Inversion 26
Defining Substitution 27
Composition of Substitutions 38
Evaluation and Substitution 58
De Bruijn Abstraction Algebra 65
Concluding Remarks 70

Chapter 3. Abstraction Logic 73
Truth Values and Logical Order 73
Complete Bi-Heyting Algebras 76
Formulas, Rules, and Sequents 81
Logic, Models, and Valuation Spaces 83
Proofs and Proof Systems 84
Line Notation 88
Soundness 89
Deduction Logic with Equality 94
Extensions 97
Deduction Theorem 99

v

vi CONTENTS

Consistency 102
Completeness 107
Rasiowa Model 108
Refutations and Refutation-Completeness 115
Is Sequent Calculus Complete? 116
Concluding Remarks 117

Bibliography 123

Preface

This book explores the topic of abstraction logic, a new logic I
discovered in the second half of 2021 [1, 2, 3]. Since then, I have
continued to develop the logic [4, 5, 6]. The material in this book
supersedes any of my previous publications on abstraction logic,
improving on them both in presentation and content.

This Founder’s Edition consists of three complete chapters,
“The Mathematical Universe”, “Abstraction Algebra”, and “Ab-
straction Logic”, and represents a milestone in the development
of abstraction logic.

Abstraction logic forms the theoretical foundation for the Prac-
tal system1. At its core, Practal is an interactive theorem proving
system. Its ambition extends beyond that; it aims to be a general
tool for creation and analysis, empowering your vision by precision.

Should you have any comments, questions, or corrections,
please do not hesitate to contact me at obua@practal.com.

Acknowledgements. Many thanks to Norbert Schirmer for
his comments, questions, and suggestions. I also want to express
my gratitude to Zarathustra Elessar Brady for pointing out that
without axiom Extensionality8 (see Figure 3.10), the complete-
ness of Deduction Logic with Equality seems in danger. It is not,
but only because the meaning of abstractions is more malleable
than even I thought at the time. Amine Chaieb read an early
paper on abstraction logic despite going through COVID-19, and
provided insightful comments on hard truth. They lingered in the
back of my mind and certainly eventually contributed to the con-
cept of logical order. I would like to thank Mario Carneiro and the
other participants of a Lean Zulip chat2 about Practical Types,
which motivated me to search for abstraction logic.
1
https://practal.com, in development

2
https://leanprover.zulipchat.com/#narrow/stream/

236446-Type-theory/topic/Practical.20Types

vii

https://practal.com
https://leanprover.zulipchat.com/#narrow/stream/236446-Type-theory/topic/Practical.20Types
https://leanprover.zulipchat.com/#narrow/stream/236446-Type-theory/topic/Practical.20Types

viii PREFACE

Many thanks to Anna Maginis, whose keen eye for design
strongly influenced this work. Without her loving support, this
book would not exist. I also want to mention Dimitris Metaxas,
her brother. His untimely death spurred the development of this
book, which at that time consisted of only the first chapter. Time
goes by in a hurry, and we have only limited time to do the things
we want to do.

January 1st, 2025

CHAPTER 1

The Mathematical Universe

Abstract. The mathematical universe is introduced, together
with operations to combine the mathematical objects of the math-
ematical universe. We argue against trying to turn operations into
mathematical objects, as this is impossible to do for all operations
due to Cantor’s theorem. Instead, we propose operators to manage
operations.

The mathematical universe, usually denoted as U , consists of
the mathematical objects under consideration. These include
numbers, functions, sets, booleans, computer programs, vector
spaces, algebras, categories, and so forth. The phrase ‘under con-
sideration’ suggests that the contents of the mathematical universe
may be context dependent. For example, at one point, you might
be interested solely in natural numbers, while at another, your fo-
cus might be limited to the boolean values true and false. At yet
another time, your attention may be on all subsets of N, the set
of all natural numbers. That is why the mathematical universe is
also called the universe of discourse.

While we certainly allow different versions of mathematical uni-
verses, as small or as large as you prefer and can justify, in practice

1

2 1. THE MATHEMATICAL UNIVERSE

arity n format n-ary operations

0
⇣
f
⌘ ⇣

0
⌘ ⇣

1
⌘

1

f(0)

f(1)

!
0

0

!
0

1

!
1

0

!
1

1

!

2

f(0, 0) f(0, 1)

f(1, 0) f(1, 1)

!

0 0

0 0

!
1 0

0 0

!
0 1

0 0

!
0 0

1 0

!
0 0

0 1

!
1 1

0 0

!

1 0

1 0

!
1 0

0 1

!
0 1

1 0

!
0 1

0 1

!
0 0

1 1

!
1 1

1 0

!

1 1

0 1

!
1 0

1 1

!
0 1

1 1

!
1 1

1 1

!

Figure 1.1. All nullary, unary, and binary operations on

U will often encompass all mathematical objects you could possi-
bly conceive of, simultaneously. For example, you are generally not
solely interested in studying just the natural numbers. Instead,
you are interested in the natural numbers N, the real numbers
R, functions from N to R, and many more mathematical objects
existing simultaneously and possibly interacting with each other.
One large mathematical universe can accommodate all of these at
the same time.

The mathematical universe is not allowed to be empty. If it
comprises exactly one mathematical object, then U is called de-
generate. Therefore, every nondegenerate mathematical universe
contains at least two distinct mathematical objects.

We also refer to mathematical objects simply as values, and
often abbreviate ‘mathematical universe’ to universe.

Operations

Values on their own are not particularly interesting. The magic
starts when values are combined, resulting in other values.

Operations provide the means to do so.

Definition 1.1 (Operation). An n-ary operation on U is a
function that accepts n values from U as inputs and yields a single
value from U as its output. A nullary operation is simply a value.

Example 1.1 (Finite Universes). Let be the universe con-
sisting of 0 and 1 only. For each fixed n, there are only a finite

OPERATIONS 3

number of n-ary operations on , all of which can be listed. There
are two nullary operations, four unary operations, and sixteen bi-
nary operations, each depicted in Figure 1.1.

Generally, assume the universe U is finite and consists of s
different values. Each n-ary operation can then be represented
as an n-dimensional array, where each dimension is of size s, and
each array entry contains the result of applying the operation to
a specific combination of n values. Each such array has sn entries,
and the content of each entry can be chosen independently from s
values to produce a unique operation. This results in s(s

n) different
n-ary operations on U .

Specifically, there are 2(2
n) n-ary operations on . It would

be impractical to extend Figure 1.1 much further. For n = 3 we
already need to list 256 operations. For n = 4, this increases to
65,536 operations. For n = 5, the number of operations grows to
4,294,967,296.

Example 1.2 (Algebra). A universe U together with a finite
number of operations o1, . . . , ok on U is also called an abstract
algebra [7, p. 287], a universal algebra [8, p. 8], or simply just
an algebra. Such an algebra is denoted as (U , o1, . . . , ok). The
following are some examples of algebras.

(1) Natural numbers N, integers Z, and real numbers R form,
together with the binary operations addition (+) and
multiplication (·), the algebras (N,+, ·), (Z,+, ·), and
(R,+, ·), respectively.

(2) The universe forms together with disjunction (_), con-
junction (^) and negation (¬) the algebra (, 0, 1,_,^,¬).
Interpreting 0 as false, and 1 as true, disjunction is defined

as

0 1

1 1

!
, conjunction as

0 0

0 1

!
, and negation as

1

0

!

(see Figure 1.1). This algebra is called the two-element
Boolean algebra.

(3) Let X be a non-empty set, and P(X) the set of all subsets
of X. Together with the empty set (;), union ([), inter-
section (\), and complement with respect to X (�), this
produces another Boolean algebra (P(X), ;, X,[,\,�).

Example 1.3 (Calculator). Let’s design the universe and op-
erations for a simple calculator. It is so simple it can only handle

4 1. THE MATHEMATICAL UNIVERSE

integers, so initially, our universe is Z. As operations, we want ad-
dition (+), subtraction (�), multiplication (⇥) and division (÷).
Defining these is straightforward for addition, subtraction, and
multiplication. The challenge, naturally, is division. What should
the result of 7÷3 be? Or 1÷0? What about 0÷0? There are nu-
merous ways to address this issue. We choose a particularly simple
one. Whenever there is a unique integer z such that x = z⇥y, the
result of x÷y is z. Otherwise, the result of x÷y is Error. For this
to work, we need to expand our universe to include not only all
integers, but also the value Error. This presents another problem.
Now we also need to make sense of 3 + Error, Error ÷ Error,
and so forth. But this is also simple to resolve. Whenever at least
one of the input values is Error, then the result is also Error. In
conclusion, this means that 7 ÷ 3, 1 ÷ 0, 0 ÷ 0, 3 + Error and
Error ÷ Error all yield the same result: Error.

Cantor’s Theorem

Example 1.1 shows that for any nondegenerate finite mathemati-
cal universe, there are more operations than mathematical objects,
even when considering only unary operations. If the universe con-
sists of s values, then there are ss unary operations, and ss > s
for s � 2.

The following variant of Cantor’s theorem [9] asserts that
there are strictly fewer mathematical objects than unary opera-
tions for any nondegenerate universe U , even when U is infinite.

Theorem 1.1 (Cantor’s Theorem for Unary Operations). Let
U be a nondegenerate mathematical universe. There is an injective
function which maps U to the space of all unary operations on U ,
but there is no such surjective function.

Proof. Define a function I from U to the space of all unary
operations on U by assigning to each value u the unary operation
I(u) = fu, where fu(v) = u for all values v. Then u 6= u0 implies
fu 6= fu0 , which means that I is injective.

Assume, on the other hand, that there was a surjective function
S from U to the space of all unary operations on U . Define a new
unary operation f such that f(u) yields a value v such that v 6=
S(u)(u). This is possible because U is nondegenerate and therefore
contains at least two values. For any value u, f(u) 6= S(u)(u),

ARE OPERATIONS MATHEMATICAL OBJECTS? 5

which implies f 6= S(u). Therefore, f is not in the image of S,
which contradicts the assumption that S is surjective. ⇤

Are Operations Mathematical Objects?

Cantor’s theorem establishes that there are more operations than
mathematical objects. This might seem paradoxical: are opera-
tions not also considered mathematical objects?

Indeed, it is tempting to try to incorporate all operations into
the mathematical universe. However, Cantor’s theorem informs
us that this is impossible. If we proceeded regardless, paradoxes
would emerge.

One potential solution to this dilemma could be as follows. We
begin with a mathematical universe, U0. However, we don’t stop
there. We generate a new mathematical universe, U1, by incor-
porating all operations on U0 into it, possibly augmented by ad-
ditional mathematical objects such as tuples and lists of elements
of U1. This process is repeated, forming new universes Ui+1 on
top of universes Ui. We have created a tower of mathematical
universes (Figure 1.2).

Did we solve our dilemma? What are our mathematical objects
now? A sensible definition is that something is a mathematical
object if there is a universe Ui which contains it. Let us call this
ultimate collection of mathematical objects U1.

Of course, we didn’t really solve our dilemma: U1 does not
contain all operations on U1! There are still many entities left we
would like to treat as mathematical objects, but cannot. We are
exactly where we started, albeit at a higher vantage point.

Example 1.4 (Simple Operation on U1). Let us assume that
each Ui, for i 2 N, contains all natural numbers and all finite lists
of elements of Ui. Then U1 also contains all natural numbers and
all finite lists of elements of U1. But the operation length which
assigns to each such list its length is not an element of Ui for any
i 2 N, and is consequently not an element of U1. ⇤

We must accept that operations on U are, generally, not math-
ematical objects residing within U . Once this is understood, it
becomes clear that we have not lost anything. We do not need
to build a tower into our foundations. Any concrete tower (Ui)i2N
of interest can be modelled explicitly as a mathematical object

6 1. THE MATHEMATICAL UNIVERSE

within our mathematical universe U , including U1 and all opera-
tions on U1. Usually, we do not need a tower at all.

However, to realise this, we need a substitute for the tower’s
defining feature. By considering the operations on Ui as math-
ematical objects of Ui+1, the tower makes it possible to discuss
operations at each level of the tower. Without the tower, we need
an alternative method to talk about operations. This is the pur-
pose of operators.

Operators

Just as operations take values as arguments, operators take oper-
ations as their arguments.

Definition 1.2 (Operator). An n-ary operator on U is a
function that accepts n operations on U as inputs and yields a
single value from U as its output. Each input position i of the
operator accepts only operations of a fixed arity mi. The list
[m1, . . . ,mn] is referred to as the shape of the operator. ⇤

Since a value is also a nullary operation, an n-ary operation is
also an n-ary operator, the shape of which is [0, . . . , 0]| {z }

n times

. In partic-

ular, a value is an operator of shape []. Thus, every mathematical
object is also an operation, and every operation is an operator
(Figure 1.3). Nevertheless, generally, operations and operators are
not mathematical objects.

Example 1.5 (Calculator, continued). Continuing Exam-
ple 1.3, let us introduce operators

P
and

Q
. Both have shape

[0, 0, 1], which means they take values l and u as their first two
input arguments, and a unary operation f as their third (and last)
input argument. We define them via

P
(l, u, f) = f(l) + f(l + 1) + · · ·+ f(u� 1) + f(u),

Q
(l, u, f) = f(l)⇥ f(l + 1)⇥ · · ·⇥ f(u� 1)⇥ f(u).

A few special cases are understood. For l > u we set
P

(l, u, f) = 0
and

Q
(l, u, f) = 1. As before,

P
(Error, u, f) =

P
(l,Error, f) =Q

(Error, u, f) =
Q
(l,Error, f) = Error.

OPERATORS 7

U1

U2

U

...

U1

U0

Figure 1.2. A tower of universes Ui, forming a universe
U1. U1 is still insufficient and does not give us all of U

U

Operations on U

Operators on U

Figure 1.3. The mathematical universe U , together with
its operations and operators

8 1. THE MATHEMATICAL UNIVERSE

Example 1.6. Generalising
P

and
Q

, we define an operator
iter of shape [0, 0, 0, 2, 1] by

iter(l, u, x, g, f) = g(iter(l, u� 1, x, g, f), f(u)) for l u,

iter(l, u, x, g, f) = x for l > u,

iter(l, u, x, g, f) = Error for l = Error or u = Error.

Then
P

(l, u, f) = iter(l, u, 0,+, f) and
Q
(l, u, f) = iter(l, u, 1,⇥, f).

⇤
At first, it might appear overly restrictive that an operator

can return only a single value. There are two reasons why this
is not the case. First, much like currying [10, p. 86], we can see
that operators can, in a sense1, return operations and even other
operators. For instance, consider the operator repeat of shape
[0, 1, 0] defined by

repeat(n, f, x) = f(f(. . . f| {z }
n times

(x) . . .)).

This operator could also be interpreted as a function mapping n to
an operator of shape [1, 0], as in mapping 2 to the operator twice.

Second, if we wish to return more complicated things than a
single value, such as multiple values, we can simply extend our
mathematical universe to include them. These things could be
tuples, sets, or even functions.

We will find that the trinity of values, operations and operators
is sufficient to express all of mathematics in a theoretically satisfy-
ing way, and perhaps more importantly, in a practically satisfying
way as well.

1But operators cannot actually be partially applied.

CHAPTER 2

Abstraction Algebra

Abstract. We introduce a simple and elegant formal language
for describing and working with mathematical objects, operations,
and operators, called abstraction algebra. After presenting its syn-
tax and semantics, we discuss alpha equivalence, a notion that
captures the idea that two expressions of the language mean the
same under any circumstances. Using de Bruijn indices, we prove
that alpha equivalence has an alternative characterisation which
is purely syntactic and easily computable. An essential tool used
in the proof is substitution, which we also base on de Bruijn in-
dices. The composition of substitutions is studied, as well as the
relationship between substitution and evaluation.

In Example 1.2, we have already mentioned that a universe U

together with a (finite) collection of operations on U is called an
abstract algebra [7, p. 287]. Given that in our setting we are
considering not only values and operations, but also operators,
it is natural to introduce the following generalisation of abstract
algebras.

9

70 2. ABSTRACTION ALGEBRA

Proof. Corollary 2.2 already proves one direction. For the
other direction, assume that S and T are alpha equivalent. Then
they have the same arity n, and for all S-algebras A, and all
valuations ⌫ into A, JSK⌫ = JT K⌫ . In particular, this is true for the
de Bruijn abstraction algebra AdB and the canonical valuation ,
for U = T . Therefore, JSK = JT K, and

↵(S)

(Lemma 2.16, Theorem 2.1) = ↵(S)[" 0, . . . , " (n� 1)]

(Lemma 2.33, Theorem 2.1) = JSK(" 0, . . . , " (n� 1))

= JT K(" 0, . . . , " (n� 1))

(Lemma 2.33, Theorem 2.1) = ↵(T)[" 0, . . . , " (n� 1)]

(Lemma 2.16, Theorem 2.1) = ↵(T).

⇤

Concluding Remarks

This chapter has introduced abstraction algebra both as a formal
language and as the name of a certain kind of mathematical struc-
ture which generalizes abstract algebras to also include operators
instead of just operations.

Hopefully, the first two sections on the syntax and semantics
of abstraction algebra have convinced you of its simplicity and
elegance. Despite this simplicity, abstraction algebra is a powerful
tool. As a consequence, the other sections discussing properties
of abstraction algebra, instead of just using it, may appear less
simple. This is especially the case if you are unfamiliar with the
semantics of programming languages. For this is what abstraction
algebra can also be used as: a programming language.

It shares this property with the lambda calculus. Issues aris-
ing in abstraction algebra have been identified long before in the
lambda calculus, in particular with respect to how to perform sub-
stitution while avoiding the capture of free variables. To deal with
these issues in his AUTOMATH system, de Bruijn introduced de
Bruijn indices (which he called ‘nameless dummies’) over fifty years
ago [11]. Unlike the lambda calculus, though, which needs to be
augmented with types for this purpose (as de Bruijn also did for
AUTOMATH), abstraction algebra can be turned into a logic di-
rectly, as we will see in the next chapter.

CONCLUDING REMARKS 71

Our representation of terms via de Bruijn indices is similar to
that found in implementations of typed higher-order logic, com-
monly referred to as locally nameless [12]. A difference is our
treatment of dangling indices. While in the locally nameless ap-
proach, terms should have no dangling indices and be locally closed,
we embrace the use of dangling indices, which occur organically in
the alpha conversion of templates. For us, de Bruijn indices are
not merely a representational issue but are of interest in their own
right to settle theoretical issues. In particular, abstraction algebra
is the correct setting to treat alpha equivalence.

Abstraction algebra generalizes abstract algebra and at the
same time incorporates higher-order features. What is of par-
ticular interest is how this combination affects the treatment of
standard topics in term rewriting [13], such as pattern matching
and unification. This is an exciting area for future research.

CHAPTER 3

Abstraction Logic

Abstract. Abstraction logic is introduced, building on our de-
velopment of abstraction algebra. Its key property is that formulas
are merely terms, because truth values form a partially ordered
substructure within the mathematical universe. If truth values
constitute a complete lattice, then natural deduction is a sound
proof system for abstraction logic. Furthermore, if they form a bi-
Heyting algebra, sequent calculus is also shown to be sound. By
constructing the Rasiowa model, we prove that natural deduction
is a complete proof system for abstraction logic.

According to Tao [14, p. 1], the material implication ‘A implies B’
can be thought of as ‘B is at least as true as A’. This is a very
general view of implication, and as it turns out, perfectly suited
to turn abstraction algebra into logic, abstraction logic.

Truth Values and Logical Order

For the sentence ‘B is at least as true as A’ to make sense, A and
B must be things which can be compared. Let us call these things

73

CONCLUDING REMARKS 117

orn(x1, . . . , xn)

x1 . . . xn

(OrEn) For all n � 0

xi

orn(x1, . . . , xn)

(OrIn) For all n � 1 and 1 i n

exn(x1 . . . xn. A[x1, . . . , xn])

x1 . . . xn. A[x1, . . . , xn]

(ExEn) For all n � 1

A[x1, . . . , xn]

exn(x1 . . . xn. A[x1, . . . , xn])

(ExIn) For all n � 1

Figure 3.14. Axioms Included in L
+

Taking a step back, do we actually need general sequents as
axioms? Imagine a logic L

+ which includes, among other abstrac-
tions and axioms, abstractions orn for n � 0 and exn for n � 1, and
the axioms shown in Figure 3.14. In L

+, it is possible to convert
any theorem that is a sequent into a theorem that is a rule, and
back. For example,

S1 . . . Sn

(x y z. a) (y. b)
! S1 . . . Sn

or2(ex3(x y z. a), ex1(y. b))
.

So for any additional axioms it is unnecessary to state them as
general sequents, as they can just be stated as rules and converted
to sequents afterwards.

By developing this idea further, a completeness theorem for
sequent calculus might be within reach, as a consequence of the
completeness of natural deduction.

Concluding Remarks

The insight that sequents, and thus templates, should be at the
heart of abstraction logic was a late one. Originally, the focus of
abstraction logic was on terms only, and required built-in abstrac-
tions for implication and universal quantification to do any logic.
But then, both theory and practical considerations suggested that
axioms should not just be mere terms, but inference rules. Ex-
panding this to general sequents was obvious and straightforward.
Yet, it is not clear if there is any practical advantage in considering
sequent calculus instead of just using natural deduction, although
the symmetry of sequent calculus is compelling. The deduction
theorem holds for both sequent calculus and natural deduction,
but completeness has been proven so far only for natural deduc-
tion. The deduction theorem does not seem to hold for those proof

118 3. ABSTRACTION LOGIC

systems in between natural deduction and sequent calculus, such
as sequence deduction. This might be taken as a hint that they
are not important.

This is only the beginning of our journey into abstraction logic.
The goal has always been to create a new foundation for reasoning,
computing and understanding —one that aligns better with the
way mathematics is practised than current standards such as first-
order logic or type theory. So far things are looking good, but
there is much work ahead, and much to explore. Let us conclude
this chapter by briefly discussing a few important points.

Mathematical Freedom. Abstraction logic does not limit
your mathematical freedom in any way. You can discuss anything
under the sun —or rather, anything possibly living in a mathe-
matical universe. Your mathematical objects can mix and mingle
as much as they like, but you can also introduce disciplined and
conservative ways of constructing new mathematical objects. To
manage your mathematical objects, you can introduce any abstrac-
tion you like. For example, it is easy to deal with undefinedness:
mathematical objects such as Error can be introduced, different
from false but logically equivalent. No static type system needs
to be pacified for this to work; the mathematical expression of
situations in which no error can occur remains unaffected and un-
cluttered.

Both Logic and Logical Framework. This is because ab-
straction logic serves as both a logic and a logical framework.
The logic has a clear and simple semantics. It is at the same time
minimal yet so powerful that we can prove a completeness theorem
for natural deduction without assuming any concrete abstractions.
This might be particularly interesting for fields such as algebraic
specification, which have invented notions such as institutions to
cope with the sheer variety of different useful logics that have re-
sisted a unifying foundation so far. It is possible that abstraction
logic is that foundation that has been evasive for so long, making
notions such as ‘logical framework’ obsolete. However, it is im-
portant to acknowledge that abstraction logic is the spiritual child
of one such framework: Isabelle/Isar [26, 27, 28]. Isabelle is
also both a logic and a framework, and therefore there are many
parallels between Isabelle’s logic Pure [29], which is intuitionistic

CONCLUDING REMARKS 119

higher-order logic, and abstraction logic. The difference is that
Pure is rooted in type theory and thus proof theory, offering only
complicated semantic accounts [30] of its logic, while the meaning
of abstraction logic is clear and simple.

Conditional Proof. Recent experiments with Practal Fly-
weight [35] have shown that the current version of abstraction logic
cannot discharge assumptions directly as one is normally used to
in natural deduction. The following proof rule is missing:

S1 . . . Sn a

b
Discharge S1 . . . Sn

a) b
It is sound for H-models and an explicit) abstraction, and will be
added to future versions of natural deduction and sequent calculus,
renaming current natural deduction to pure deduction.

Hilbert-Style Natural Deduction. Abstraction logic uni-
fies not only different kinds of logic but also different approaches
to logic. It is a Hilbert-style system based on a few fixed infer-
ence rules and an arbitrary collection of axioms. But these axioms
transcend the usual notion of an axiom, and are in fact also rules
or even sequents. This means that natural deduction and also se-
quent calculus are integral to abstraction logic, unifying aspects of
both model-theoretic and proof-theoretic approaches to logic.

Paraconsistency. Paraconsistent logics seem at first to be at
odds with abstraction logic, as there is only one value true repre-
senting truth in abstraction logic, the top element of the logical
order. There are paraconsistent logics such as Graham Priest’s
Logic of Paradox [25] which have multiple logical values des-
ignated as being true. Amine Chaieb pointed out early that this
does not have to be a problem, as there can be a hard truth co-
existing with other soft truth values. And indeed, this can be
modelled in abstraction logic by using a logical order consisting of
the ordinary two-valued Boolean algebra {true, false}, a universe
{true, both, false}, and a logical mapping that assigns true to both
true and both.

Philosophical Considerations. The example of paraconsis-
tency shows that supposedly high-brow aspects of logic turn out
to be quite simple in abstraction logic. This is not a coincidence.
Abstraction logic is based on a simple conceptualisation of the

120 3. ABSTRACTION LOGIC

Logic One Mathematical Universe General Binders

First-Order Yes No
Second-Order Yes No
Higher-Order No Yes

Abstraction Yes Yes

Figure 3.15. Classifying Logics Along Two Dimensions

mathematical universe, its operations and operators. It is hard to
imagine a simpler foundation that still respects Cantor’s theorem.
But even to describe this simple foundation, we need to presuppose
things like collections, to describe the mathematical universe, and
functions, to describe operations and operators. Philosophically,
our approach is Platonic. We can talk about basic concepts such
as collections and functions without defining them because they
are part of a mathematical reality we just tap into, rather than
invent. While we reject paraconsistency and intuitionism from a
philosophical point of view, they are perfectly valid and useful
mathematical concepts that can be explained naturally within the
framework of abstraction logic.

Standard and Non-Standard. Another example of how ab-
straction logic crystallises difficult concepts is that of standard ver-
sus non-standard models. According to Hintikka [31], the distinc-
tion between standard and non-standard models was first explicitly
formulated by Henkin in 1950, in the context of higher-order logic,
and represented a watershed in the foundations of mathematics.
In abstraction logic, valuation spaces are a simple concept that
elegantly captures the essence of this distinction. They make it
possible for natural deduction to be complete yet capable of ex-
pressing rules such as natural induction succinctly:

A[0] x.A[x]) A[x+ 1]

A[x]
.

In standard models, the variable A varies over all possible unary
operations on the mathematical universe, while in non-standard
models which unary operations are covered depends on the valua-
tion space of the model.

CONCLUDING REMARKS 121

First-Order and Higher-Order. Logics are usually classi-
fied according to their order, such as first-order, second-order or
higher-order. First-order logic is the common standard, while
second-order and especially higher-order logic have gained pop-
ularity due to their practical expressiveness [32] and adjacency to
computer languages. First-order logic makes it possible to reason
about the entire mathematical universe uniformly, and ZFC set
theory takes advantage of that. Higher-order logic cannot do that,
but needs to under-approximate the mathematical universe as a
tower of typed slices owing to Cantor’s theorem (see Figure 1.2).
The advantage of higher-order logic is its general mechanism of
variable binding based on the lambda calculus. We call this feature
general binders. First-order logic does not have general binders,
but only two specific binding mechanisms, universal quantification
and existential quantification. We can classify logics along these
two dimensions, instead of their order, and Figure 3.15 shows the
result. Interestingly, second-order logic is more like first-order logic
than higher-order logic in that respect. Furthermore, the result
tells us that abstraction logic combines the advantages of first-
order logic and higher-order logic while avoiding their weaknesses
by scoring in both dimensions. Note that abstraction logic does
not achieve general binders via the lambda calculus, as this leads
inevitably to a divided mathematical universe. Instead, abstrac-
tion logic embraces that operations and operators are not math-
ematical objects, but need to be represented through a separate
mechanism, as illustrated in Figure 1.3.

This fusion of a uniform mathematical universe with general
binders is powerful, and can be confusing initially. When abstrac-
tion logic was first presented at the UNILOG 2022 conference in
Crete, an audience member wondered how the formula

8x. x

could ever mean anything sensible. Lemma 3.21 tells us that its
meaning is false. The possibility of defining false like this has
been noted as early as 1951 by Church [34], albeit Church let the
quantifier range over booleans only. Much later in 2013 Kripke
found it remarkable enough to exhibit it in a short note about
Fregean first-order logic [33]. Unlike Church, and like us, Kripke
lets the quantifier range over the entire universe, which he calls a
Fregean domain.

122 3. ABSTRACTION LOGIC

Relationship to Established Logics. We have given a self-
contained presentation of abstraction logic. What remains to
be done is to clarify its relationship to established logics. We
have seen that axioms and inference rules for predicate logic (Fig-
ure 3.11) are easily encoded in abstraction logic (Figure 3.10), but
we have not yet gone beyond acknowledging this surface-level sim-
ilarity. For example, is our completeness result for natural deduc-
tion strong enough to imply the established completeness results
for known logics when they are encoded in abstraction logic?

Computer Algebra. The algebraic nature of abstraction
logic seems particularly well-suited to finally allowing logic to make
sizable inroads into computer algebra, which has resisted various
such efforts based on conventional logics before.

Automation. Much research has been done on automating
theorem proving in first-order logic. Significant work has also been
done on automating higher-order logic [36]. Automating higher-
order logic is more difficult than automating first-order logic, much
of which is due to the complications that lambda calculus and type
systems bring. It seems that abstraction logic would make a great
context in which to study automation, given that neither lambda
calculus nor type systems are built into it, yet it integrates both
first-order and higher-order aspects.

Artificial Intelligence. Beyond conventional techniques for
automation, AI has become a hot topic in machine-assisted
proof [37]. Of particular interest is autoformalization [38],
which means the process of translating informal mathematical
prose into formal logic. Abstraction logic seems particularly well
suited for autoformalization, as again, no type systems or towers
of universes complicate the picture on the logical side.

AI not only seems to be destined to revolutionise the practical
application of logic, but the reverse is also of increasing impor-
tance. The emergence of reasoning models [39] suggests that
reasoning and thus logic will have a profound impact on modern
AI as well. Of course, informal reasoning is not exactly the same
as formal reasoning, but abstraction logic seems to be ideally po-
sitioned to bridge that gap.

Bibliography

[1] Steven Obua. Practical Types. https://doi.org/10.47757/practical.
types.1, July 2021.

[2] Steven Obua. Abstraction Logic. https://doi.org/10.47757/

abstraction.logic.2, November 2021.
[3] Steven Obua. Philosophy of Abstraction Logic. https://doi.org/10.

47757/pal.2, December 2021.
[4] Steven Obua. Automating Abstraction Logic. https://doi.org/10.

47757/aal.1, March 2022.
[5] Steven Obua. Abstraction Logic: A New Foundation for (Computer)

Mathematics. https://arxiv.org/abs/2207.05610, July 2022.
[6] Steven Obua. Logic is Algebra. https://arxiv.org/abs/2304.00358,

April 2023.
[7] Helena Rasiowa. Introduction to Modern Mathematics. https://doi.

org/10.1016/C2013-0-11892-2, North-Holland 1973.
[8] Georg Grätzer. Universal Algebra. https://doi.org/10.1007/

978-0-387-77487-9, Second Edition, Springer 1979.
[9] Georg Cantor. Ueber eine elementare Frage der Mannigfaltigkeitslehre.

In Jahresbericht der Deutschen Mathematiker-Vereinigung, pp. 75-78.
1890/1891.

[10] Haskell B. Curry. Some Philosophical Aspects of Combinatory Logic. In
The Kleene Symposium, pp. 85-101. North-Holland 1980.

[11] N. G. de Bruijn. Lambda Calculus Notation with Nameless Dummies,
a Tool for Automatic Formula Manipulation, with Application to the
Church-Rosser Theorem. https://doi.org/10.1016/1385-7258(72)

90034-0, North-Holland 1972.
[12] Arthur Charguéraud. The Locally Nameless Representation. https://

doi.org/10.1007/s10817-011-9225-2, Springer 2012.
[13] Franz Baader and Tobias Nipkow. Term Rewriting and All That. https:

//doi.org/10.1017/CBO9781139172752, Cambridge University Press
1998.

[14] Terence Tao. Compactness and Contradiction. https://doi.org/10.

1090/mbk/081, American Mathematical Society, 2013.
[15] Nikolaos Galatos, Peter Jipsen, Tomasz Kowalski and Hiroakira Ono.

Residuated Lattices: An Algebraic Glimpse at Substructural Logics. Else-
vier 2007.

123

https://doi.org/10.47757/practical.types.1
https://doi.org/10.47757/practical.types.1
https://doi.org/10.47757/abstraction.logic.2
https://doi.org/10.47757/abstraction.logic.2
https://doi.org/10.47757/pal.2
https://doi.org/10.47757/pal.2
https://doi.org/10.47757/aal.1
https://doi.org/10.47757/aal.1
https://arxiv.org/abs/2207.05610
https://arxiv.org/abs/2304.00358
https://doi.org/10.1016/C2013-0-11892-2
https://doi.org/10.1016/C2013-0-11892-2
https://doi.org/10.1007/978-0-387-77487-9
https://doi.org/10.1007/978-0-387-77487-9
https://doi.org/10.1016/1385-7258(72)90034-0
https://doi.org/10.1016/1385-7258(72)90034-0
https://doi.org/10.1007/s10817-011-9225-2
https://doi.org/10.1007/s10817-011-9225-2
https://doi.org/10.1017/CBO9781139172752
https://doi.org/10.1017/CBO9781139172752
https://doi.org/10.1090/mbk/081
https://doi.org/10.1090/mbk/081

124 BIBLIOGRAPHY

[16] Jorge Picado and Aleš Pultr. Frames and Locales: Topology without
Points. Birkhäuser 2012.

[17] Cecylia Rauszer. Semi-Boolean algebras and their applications to in-
tuitionistic logic with dual operations. http://eudml.org/doc/214696,
1974.

[18] Gonzalo E. Reyes and Houman Zolfaghari. Bi-Heyting algebras, toposes
and modalities. https://doi.org/10.1007/BF00357841, 1996.

[19] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order.
Second Edition. Cambridge University Press, 2002.

[20] Katuzi Ono. Reduction of logics to the primitive logic. https://doi.org/
10.2969/jmsj/01930384, 1967.

[21] Anil Nerode and Richard A. Shore. Logic for Applications. Second edition,
Springer 1997.

[22] Errata for Logic for Applications [21], https://pi.math.cornell.edu/
~shore/bookcorrections2023.pdf, 2023.

[23] Helena Rasiowa. An Algebraic Approach to Non-Classical Logics. North-
Holland Publishing Company / Elsevier, May 1974.

[24] Kurt Gödel. Zum Intuitionistischen Aussagenkalkül. Anzeiger der
Akademie der Wissenschaften in Wien, Vol. 69, pp. 65-66, 1932.

[25] Graham Priest. Logic of Paradox. https://doi.org/10.1007/

BF00258428, 1979.
[26] Lawrence C. Paulson. Isabelle: The Next 700 Theorem Provers. https:

//doi.org/10.1007/BFb0012891, 1988.
[27] Tobias Nipkow, Markus Wenzel and Lawrence C. Paulson. Isabelle/HOL:

A Proof Assistant for Higher-Order Logic. https://doi.org/10.1007/
3-540-45949-9, 2002.

[28] Markus Wenzel. Isar — A Generic Interpretative Approach to Readable
Formal Proof Documents. https://doi.org/10.1007/3-540-48256-3_
12, 1999.

[29] Lawrence C. Paulson. The foundation of a generic theorem prover. https:
//doi.org/10.1007/BF00248324, 1989.

[30] Chad E. Brown. A semantics for intuitionistic higher-order logic sup-
porting higher-order abstract syntax. https://www.ps.uni-saarland.

de/iholhoas/msethoas.pdf, 2014.
[31] Jaakko Hintikka. Standard vs. Nonstandard Distinction: A Watershed in

the Foundations of Mathematics. In From Dedekind to Gödel, pp. 21-44.
Synthese Library, Vol. 252. Springer 1995.

[32] William M. Farmer. Simple Type Theory: A Practical Logic for Ex-
pressing and Reasoning About Mathematical Ideas. https://doi.org/

10.1007/978-3-031-21112-6, 2023.
[33] Saul A. Kripke. Fregean Quantification Theory. https://doi.org/10.

1007/s10992-013-9299-x, 2013.
[34] Alonzo Church. A formulation of the logic of sense and denotation.

https://archive.org/details/structuremethodm0000henl, 2013.
[35] Practal Flyweight. https://github.com/practal/practal-flyweight,

visited March 2025.

http://eudml.org/doc/214696
https://doi.org/10.1007/BF00357841
https://doi.org/10.2969/jmsj/01930384
https://doi.org/10.2969/jmsj/01930384
https://pi.math.cornell.edu/~shore/bookcorrections2023.pdf
https://pi.math.cornell.edu/~shore/bookcorrections2023.pdf
https://doi.org/10.1007/BF00258428
https://doi.org/10.1007/BF00258428
https://doi.org/10.1007/BFb0012891
https://doi.org/10.1007/BFb0012891
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-48256-3_12
https://doi.org/10.1007/3-540-48256-3_12
https://doi.org/10.1007/BF00248324
https://doi.org/10.1007/BF00248324
https://www.ps.uni-saarland.de/iholhoas/msethoas.pdf
https://www.ps.uni-saarland.de/iholhoas/msethoas.pdf
https://doi.org/10.1007/978-3-031-21112-6
https://doi.org/10.1007/978-3-031-21112-6
https://doi.org/10.1007/s10992-013-9299-x
https://doi.org/10.1007/s10992-013-9299-x
https://archive.org/details/structuremethodm0000henl
https://github.com/practal/practal-flyweight

BIBLIOGRAPHY 125

[36] Alexander Bentkamp, Jasmin Blanchette, Visa Nummelin, Sophie Tour-
ret, Petar Vukmirović and Uwe Waldmann. Mechanical Mathematicians.
https://doi.org/10.1145/3557998, 2023.

[37] Terence Tao. Machine-Assisted Proof. https://doi.org/10.1090/

noti3041, 2024.
[38] Yuhuai Wu, Albert Q. Jiang, Wenda Li, Markus N. Rabe, Charles Staats,

Mateja Jamnik and Christian Szegedy. Autoformalization with Large Lan-
guage Models. https://doi.org/10.17863/CAM.94956, 2022.

[39] DeepSeek-AI. DeepSeek-R1: Incentivizing Reasoning Capability in LLMs
via Reinforcement Learning. https://doi.org/10.48550/arXiv.2501.
12948, January 2025.

https://doi.org/10.1145/3557998
https://doi.org/10.1090/noti3041
https://doi.org/10.1090/noti3041
https://doi.org/10.17863/CAM.94956
https://doi.org/10.48550/arXiv.2501.12948
https://doi.org/10.48550/arXiv.2501.12948

	Preface
	Chapter 1. The Mathematical Universe
	Operations
	Cantor's Theorem
	Are Operations Mathematical Objects?
	Operators

	Chapter 2. Abstraction Algebra
	Syntax
	Semantics
	Alpha Equivalence
	De Bruijn Terms and Alpha Conversion
	Evaluating De Bruijn Terms
	Alpha Inversion
	Defining Substitution
	Composition of Substitutions
	Evaluation and Substitution
	De Bruijn Abstraction Algebra
	Concluding Remarks

	Chapter 3. Abstraction Logic
	Truth Values and Logical Order
	Complete Bi-Heyting Algebras
	Formulas, Rules, and Sequents
	Logic, Models, and Valuation Spaces
	Proofs and Proof Systems
	Line Notation
	Soundness
	Deduction Logic with Equality
	Extensions
	Deduction Theorem
	Consistency
	Completeness
	Rasiowa Model
	Refutations and Refutation-Completeness
	Is Sequent Calculus Complete?
	Concluding Remarks

	Bibliography

